# 高钕浓度的玻璃态四磷酸盐的光谱特性

祁长鸿 干福熹

(中国科学院上海光机所)

提要:本文报道 Nd<sup>3+</sup>离子浓度从 0.13×10<sup>21</sup>(厘米<sup>-3</sup>) 到 4×10<sup>21</sup>(厘米<sup>-3</sup>) 玻璃 态四磷酸盐激光材料,并给出这类激光玻璃的一些光谱特性数据。着重讨论了这类 材料中 Nd<sup>3+</sup>离子的浓度猝灭机理。

## Spectral properties in glassy tetraphosphate with high neodymium (Nd<sup>3+</sup>) concentration

Qi Changhong, Gan Fuxi

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: In this paper, laser materials of glassy tetraphosphate with  $Nd^{3+}ion$  concentrations of  $0.13 \times 10^{21}$  (cm<sup>-3</sup>) to  $4 \times 10^{21}$  (cm<sup>-3</sup>) are reported and the data of spectral properties for this kind of laser glass are given. Concentration quenching mechanism of  $Nd^{3+}ions$  in these materials is discussed in particular.

一般掺钕的激光材料(包括晶态和玻璃态),由于钕离子(Nd<sup>3+</sup>)之间的相互作用引起的浓度猝灭产生强烈的无辐射损耗。近年来发现在某些掺钕的磷酸盐晶体中Nd<sup>3+</sup>离子之间的交叉弛豫( ${}^{4}F_{3/2} - {}^{4}I_{15/2} = {}^{4}I_{9/2} - {}^{4}I_{15/2}$ )作用较弱,在高钕浓度下发光量子效率没有显著下降,这类掺钕的磷酸盐晶体在微型固体激光器的发展中获得了应用前景,并得到人们普遍重视。首先是五磷酸盐,如La(Nd)P<sub>5</sub>O<sub>14</sub>、NdP<sub>5</sub>O<sub>14</sub>等。近来人们注意到四磷酸盐如LiNdP<sub>4</sub>O<sub>12</sub>、KNdP<sub>4</sub>O<sub>12</sub>等。

为了克服单晶材料制备上诸如晶体生长 速率慢,尺寸小和光学质量差等困难,先研制 高钕浓度的磷酸盐玻璃。根据不同制备条 件,四磷酸盐可以形成晶态,也可以形成玻璃 态,系统地研究掺钕四磷酸盐玻璃的光谱特性,对发展高钕浓度激光钕玻璃是有实际意义和理论意义的。

本实验中所使用的基质玻璃成分和 Nd<sup>3+</sup>离子浓度在表1中给出,其中包括两种 系统:一种为在四磷酸锂镧中以钕逐渐代替 镧(LiNd<sub>x</sub>La<sub>(1-x</sub>)P<sub>4</sub>O<sub>12</sub>),另一种为不同的 掺钕四磷酸盐( $R_mO_n \cdot 0.5Nd_2O_3 \cdot 0.5La_2O_3 \cdot$ 4P<sub>2</sub>O<sub>14</sub>,其中  $R_mO_n$ 为Li<sub>2</sub>O, BaO, Al<sub>2</sub>O<sub>3</sub>)。

在 SP-700 分光光度计上测定了不同的 掺钕玻璃态四磷酸盐的吸收光谱,见图 1。这 些玻璃态的四磷酸盐的光谱结构都是十分相 似的。应用 Judd 和 Ofelt 模型<sup>[1]</sup> 和吸收光 谱数据,通过计算各谱线的电偶极跃迁强度

收稿日期: 1982年2月12日

| 编号 | 玻璃成分                                                                                            | La <sub>2</sub> O <sub>3</sub> :Nd <sub>2</sub> O <sub>3</sub> | 折射率<br>na      | 密度<br>(克/厘米 <sup>3</sup> ) | Nd 浓度<br>(×10 <sup>21</sup> 厘 米 <sup>-3</sup> ) |  |
|----|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------|----------------------------|-------------------------------------------------|--|
| 1  | Li <sub>2</sub> O · (Nd, La) <sub>2</sub> O <sub>3</sub> · 4P <sub>2</sub> O <sub>5</sub>       | 30:1                                                           | 1.578          | 3.09                       | 0.13                                            |  |
| 2  | Li <sub>2</sub> O• (Nd, La) <sub>2</sub> O <sub>3</sub> •4P <sub>2</sub> O <sub>5</sub>         | 4:1                                                            | S. Col. Ma     | 3.16                       | 0.82                                            |  |
| 3  | Li <sub>2</sub> O• (Nd, La) <sub>2</sub> O <sub>3</sub> •4P <sub>2</sub> O <sub>5</sub>         | 2:1                                                            |                | 3.07                       | 1.33                                            |  |
| 4  | Li <sub>2</sub> O• (Nd, La) <sub>2</sub> O <sub>3</sub> •4P <sub>2</sub> O <sub>5</sub>         | 1:1                                                            | 1.583          | 3.17                       | 2.01                                            |  |
| 5  | Li <sub>2</sub> O•(Nd, La) <sub>2</sub> O <sub>3</sub> •4P <sub>2</sub> O <sub>5</sub>          | 1:2                                                            | and the second | 3.07                       | 2.65                                            |  |
| 6  | $\mathrm{Li}_{2}\mathrm{O}\cdot\mathrm{Nd}_{2}\mathrm{O}_{3}\cdot\mathrm{4P}_{2}\mathrm{O}_{5}$ | -                                                              | 1.580          | 3.17                       | 4.09                                            |  |
| 7  | BaO•(Nd, La) <sub>2</sub> O <sub>3</sub> •4P <sub>2</sub> O <sub>5</sub>                        | 1:1.0                                                          | 1.580          | 3.14                       | 1.41                                            |  |
| 8  | $Al_2O_3 \cdot (Nd, La)_2O_3 \cdot 4P_2O_5$                                                     | 1:1                                                            | 1.550          | 2.95                       | 1.38                                            |  |

表1 基质玻璃成分及性质



图 1 7 号样品的吸收光谱 (厚度为 0.35 毫米)

S,可以拟合得到强度参数 Ω<sub>t=2,4,6</sub>,这种计 算已广泛应用于稀土掺杂的晶体和玻璃的辐 射跃迁几率的计算<sup>[2,3]</sup>.

 $S = \sum_{t=2,4,6} \Omega_t |\langle (S, L)J \| U^{(t)} \| \langle (S', L') \rangle|^2$ 

其中〈||U<sup>(\*)</sup>||〉是居间耦合近似中算出的二次 约化矩阵元,是由稀土离子的4f<sup>\*</sup>电子组态 决定的,而与稀土离子的配位场基本无关。 在玻璃中由于 Nd<sup>3+</sup>离子的不少光谱能级是 重迭的,||U<sup>(\*)</sup>||值就取重迭能级的||U<sup>(\*)</sup>||之 和,其值见文献[3]中的表2。Ω<sub>2</sub>、Ω<sub>4</sub>和Ω<sub>6</sub> 表示配位场与屏蔽的4f<sup>\*</sup>电子组态相互作用 的强度参量,隐含了奇对称配位场项,径向积 分和微扰分母,而与稀土离子的4f<sup>\*</sup>的电子

. 692 .

#### 组态无关。

在自制的1米光栅单色光计(色散 12Å/ 毫米)上测定荧光光谱,见图2。各种玻璃的 发光寿命 τ<sub>1</sub>是在荧光衰减仪上测得的。实 验中所获得的各种掺钕玻璃的光谱和发光特 性都在表2和表3中列出。



图 2 4 号样品已修正过的荧光光谱

从表 2 列出的四磷酸盐玻璃中 Nd<sup>3+</sup>离 子的一些辐射跃迁特性可明显地看出,不论 在四磷酸锂镧中(LiNd<sub>2</sub>La<sub>(1-2</sub>)P<sub>4</sub>O<sub>12</sub>) 钕代替 镧,还是在掺钕的四磷酸盐(R<sub>m</sub>O<sub>n</sub>•0.5Nd<sub>2</sub>O<sub>3</sub>• 0.5La<sub>2</sub>O<sub>3</sub>•4P<sub>2</sub>O<sub>4</sub>)中以钡或者铝代替锂以后, 辐射跃迁特性变化都不明显。辐射跃迁特性 主要不是由网络结构外的阳离子决定的,而 是决定于磷氧基团的结构,即由 [PO<sub>4</sub>]四面 体组成的链结构决定。在这些玻璃中[PO<sub>4</sub>]的 结构基本上是相同的,都属于链状结构,Nd<sup>3+</sup>

| 编号                 | τ <sub>f</sub><br>(微秒) | τ,<br>(微秒) | Δλ <sub>eff</sub><br>(埃) | Ω·10 <sup>-20</sup> (厘米 <sup>2</sup> ) |      | 跃迁几率(秒⁻¹)      |      |        | 分支比(4F3/2→4I5) |         |       |       | $\sigma$ |                   |       |
|--------------------|------------------------|------------|--------------------------|----------------------------------------|------|----------------|------|--------|----------------|---------|-------|-------|----------|-------------------|-------|
|                    |                        |            |                          | $\Omega_2$                             | Ω4   | Ω <sub>6</sub> | A1.8 | A1. 35 | A1.05          | A 0. 88 | β1.8  | β1.35 | β1.05    | β <sub>0.88</sub> | (厘米2) |
| 1                  | 300                    | 334        | 290                      | 4.32                                   | 4.42 | 5.24           | 14   | 288    | 1508           | 1195    | 0.005 | 0.096 | 0.501    | 0.398             | 3.45  |
| 2                  | 90                     | 310        | 290                      | 4.60                                   | 4.72 | 5.60           | 15   | 309    | 1618           | 1276    | 0.005 | 0.096 | 0.502    | 0.396             | 3.56  |
| 3                  | 85                     | 365        | 282                      | 3.81                                   | 4.03 | 4.74           | 13   | 262    | 1374           | 1092    | 0.005 | 0.095 | 0.501    | 0.398             | 3.18  |
| 4                  | 70                     | 370        | 290                      | 3.21                                   | 3.81 | 4.20           | 11   | 233    | 1350           | 1026    | 0.004 | 0.090 | 0.500    | 0.420             | 3.00  |
| 6                  | 50                     | 394        | 290                      | 3.26                                   | 3.82 | 4.10           | 11   | 226    | 1290           | 1010    | 0.004 | 0.090 | 0.490    | 0.400             | 2.91  |
| 7.7                | 80                     | 425        | 307                      | 3.37                                   | 3.45 | 4.08           | 11   | 225    | 1181           | 936     | 0.004 | 0.095 | 0.500    | 0.400             | 2.57  |
| 8                  | 80                     | 474        | 299                      | 3.21                                   | 3.30 | 3.89           | 10   | 202    | 1058           | 839     | 0.005 | 0.095 | 0.502    | 0.398             | 2.40  |
| LNP <sup>[4]</sup> | 120[5]                 | 318        | 22[5]                    | 2.0                                    | 4.3  | 5.9            | 9    | 360    | 1520           | 1260    | 0.003 | 0.120 | 0.480    | 0.400             | 32[6] |

表2 四磷酸盐基质中 Nd<sup>3+</sup> 离子的辐射跃迁特性

表 3 不同磷酸盐基质中 Nd<sup>3+</sup> 离子的无辐射跃迁特性

| 编号                          | N <sub>0</sub> ·10 <sup>21</sup> (厘米 <sup>-3</sup> ) | τ <sub>f</sub> (微秒) | r <sub>0</sub> (埃) | $A_{nr}(1)$         |
|-----------------------------|------------------------------------------------------|---------------------|--------------------|---------------------|
| 田国圣丽」中区。周                   | 0.13                                                 | 300                 | 12.0               | 热价能量和多数             |
| 2                           | 0.82                                                 | 90                  | 6.6                | 7900                |
| 3                           | 1.33                                                 | 85                  | 5.6                | 9020                |
| 4                           | 2.06                                                 | 70                  | 4.9                | 11580               |
| 5                           | 2.65                                                 | 60                  | 4.5                | 13600               |
| 6                           | 4.09                                                 | 50                  | 3.9                | the story that when |
| LiNdP4O12 晶体 <sup>[6]</sup> | 4.42                                                 | 135                 | 5.620              | 5160                |
| NdP5O14晶体[6]                | 3.88                                                 | 115                 | 5.192              |                     |

离子是被 -O-P-O- 键所分离的。由 Ba<sup>2+</sup>、 Al<sup>3+</sup> 代替 Li<sup>+</sup> 后,荧光线宽增高,因此反 映在受激发射截面  $\sigma_L$  上是下降的。所测得 的  $\sigma_L$  值与文献 [7] 报导的四磷酸盐玻璃 NaNd P<sub>4</sub>O<sub>12</sub>、KNdP<sub>4</sub>O<sub>12</sub>和 BaNdP<sub>4</sub>O<sub>12</sub>相 似。

从表 2 中比较晶态(LNP:四磷酸钕锂) 和非晶态的辐射跃迁特性还可以看到,晶态 的受激发射截面比玻璃态约高一个数量级, 这主要是由于 Nd<sup>3+</sup> 离子在晶态材料中的有 效线宽  $\Delta \lambda_{eff}$ 比较窄造成的,而晶态和非晶态 的总辐射跃迁几率  $\Sigma A$ ,则相差不大。就  $\Omega_{1}$ 参量而言,从表 2 中可看出,晶态的  $\Omega_{2}$ 比玻 璃态的小,而  $\Omega_{4}$  和  $\Omega_{6}$  两参量比玻 璃态的 大。 $\Omega_2$ 的大小标志着 钕 离子 Nd<sup>3+</sup> 处 4f 轨 道与阴离子外层电子轨道混杂程度,从晶态 到玻璃态是上升的,而 $\Omega_4$ 和 $\Omega_6$ 之值是与 Nd<sup>3+</sup>离子格位对称性有关的。

如图 3 所示, Nd<sup>3+</sup> 离子的浓度  $N_0$  对荧 光寿命  $\tau_1$  和荧光强度  $I/I_0$  的影响是显著 的。当1号样品中 Nd<sup>3+</sup> 离子的浓度为 0.13 ×10<sup>21</sup>(厘米<sup>-3</sup>)时,其荧光寿命  $\tau_1$  值达到 300 (微秒),而  $I/I_0$  值呈现本实验中的最大值。 随着  $N_0$  值加大,  $\tau_1$ 和  $I/I_0$ 都相应降低。这 种 Nd<sup>3+</sup> 离子之间的相互作用过程可理解为 一个被激活的 Nd<sup>3+</sup> 离子(1)与另一个未被激 活的邻近 Nd<sup>3+</sup> 离子(2) 的相互作用,可能产 生一个从亚稳态  ${}^4F_{3/2}$  到  ${}^4I_{15/2}$  跃迁与另一



A f 和相对荧光强度 *I*/*I*<sub>0</sub>(1.05 微米) 的影响。I—τ<sub>f</sub>(微秒); II—*I*/*I*<sub>0</sub>

个从基态 <sup>4</sup>I<sub>9/2</sub> 到 <sup>4</sup>I<sub>15/2</sub> 跃迁,两者能量截距 相仿[5730(厘米<sup>-1</sup>)和 5750(厘米<sup>-1</sup>)],产生 了无辐射共振能量转移过程<sup>[33]</sup>。经过钕亚稳 态的能量转移速度极快<sup>[83]</sup>。根据 Dexter 的 理论计算<sup>[93]</sup>,在两中心均为电偶跃迁时,共振 能量转移几率是与两中心距离 r 的六次方成 反比的;如果两中心是四极跃迁,能量转移 几率则与 r 的更高次项成反比。图 4 表明,



图 4 掺钕四磷酸盐玻璃的浓度(N<sup>2</sup>)与 无辐射跃迁几率 *Anr* 的关系

. 694 .

LiNd<sub>a</sub>La<sub>(1-x)</sub>P<sub>4</sub>O<sub>12</sub> 四磷酸 盐 玻 璃 中 Nd-Nd 离子的无辐射跃迁几率  $A_{nr} = Nd^{3+}$ 离子 浓 度  $N_0^2$ 成线性关系,即  $A_{nr} = Nd^{3+} - Nd^{3+} 之$ 间距离 r 六次方成反比( $1/N_0 = 4\pi r^3/3$ ),这 就从实验上证明了 在高 Nd<sup>3+</sup> 浓度 情况下 Nd<sup>3+</sup>-Nd<sup>3+</sup> 之间相互作用还是电偶极共振能 量转移过程为主。在表 3 中列出了掺 Nd 磷 酸盐的  $N_0$ 、 $\tau_f$ 、r(Å)和  $A_{nr}$ 的一些数值。

图 5 中示出各种掺钕磷酸盐的量子效率  $\eta$  与掺 Nd 浓度  $N_0$  的关系。从图 5 可以看 到, YAG 晶体和 Ba(PO<sub>8</sub>)<sub>2</sub> 偏磷酸盐玻璃, 在 Nd<sup>3+</sup> 离子的浓度大于 10<sup>30</sup>/厘米<sup>3</sup> 时量子 效率就明显下降,这说明在这些基质中 Nd<sup>3+</sup> -Nd<sup>3+</sup> 的相互作用是比较强的。在磷酸盐玻 璃和晶体中随着 P<sub>2</sub>O<sub>5</sub> 含量的下降, Nd<sup>3+</sup> 离 子的浓度淬灭趋向加剧。这可能是因由 [PO<sub>4</sub>] 四面体组成的结构链逐渐裂断, 对 Nd<sup>3+</sup> 离子间的隔离作用减弱所造成的。



从以上得到的一些结果来看,高 Nd 浓 度晶体和高 Nd 浓度玻璃态四磷酸盐玻璃 中 的 Nd<sup>3+</sup> 离子在其结构上是被磷氧链所 隔 离 的。因而这种高浓度四磷酸盐玻璃的浓度淬 (下转第 719 页)



图 8 Ga1-gAlgAs 材料的热阻率与 Al 克分子数 x 的关系曲线

剂[4]。在可见光 GaAlAs 激光器中, P型 Ga1-xAxAs 层由于 x 值很高, 同样用 Ge 作掺 杂剂,反复试验测量,只能获得 P=6.85× 1015~9.4×1016 厘米-3 的载流子浓度, 这样 低浓度的外延层, 使器件的串联电阻和热阻 较大,器件难于室温连续工作。如果希望器 件获得大功率输出而置于/液氮(77K)工作 [4] 郑广富等:《半导体光电》,1982, No. 1, 6.

### (上接第694页)

灭效应是与四磷酸盐晶体相似的。掺钕玻璃 态四磷酸盐的受激发射截面虽低于晶态,但 在玻璃中 Nd3+ 的吸收谱带较宽, 有利于吸收 和储存能量, 能成为高功率的小型激光器的 固体材料。

但值得注意的是在制备这种激光玻璃过 程中,要特别采取除水工艺技术,为的是进一 步消除羟基OH与Nd3+离子相互作用所引 起的无辐射跃迁过程,以便提高量子效率。对 样品 4 和样品 7 在近红外区 3000 (厘米-1) 附 近测出 OH 基的吸收系数分别为  $\delta_4 = 17$  (厘  $*^{-1}$ ),  $\delta_7 = 14( { 厘 } { * }^{-1} )$ 。 这两个数值都超过 高 Nd 浓度的四磷酸盐晶体的数值。只要进 一步改进制备过程中的工艺技术,获得比晶 体显示出更大优越性的大尺寸高质量激光材 料是完全可能的。

作者向提供玻璃样品的林凤英、毛涵芬 同志表示感谢。

时, 掺 Ge 材料的载流子还会被冻析, 就更增 大了串联电阳。我们在含高Al量的P型 GaAlAs 限制层中用掺 Zn 代替掺 Ge, 载流 子浓度可提高2个数量级以上,这就大大降 低了器件的串联电阻和热阻,容易获得室温 连续工作的可见光 GaAlAs 激光器。

研制过程中,我们得到上海复旦大学、北 京有色金属研究院、长春物理所等单位的大 力支援和本所内有关同志的积极协作,在此 表示衷心的感谢!

#### 考 文 献

- [1] H. C. CaSey Jr., M. B. Panish; Heterostructure Lasers Parts, 1978, p45, p193~194.
- [2] 《日经エレクトロニクス》编辑部, 1980, 2~18, p 96~107.
- [3] M. A. Afromowitz; J. Appl. Phys., 1973, 44, 1292.



- [1] B. R. Judd; Phys. Rev., 1962, 127, No. 3, 730. G. S. Ofelt: J. Chem. Phys., 1962, 37, 258.
- [2] L. A. Riseferg, M. J. Weber; Progress in Optics, 14, E. Wolf. Ed. Amsterdam, The Netherlands: Nerth Halland, 1975.
- [3] 干福熹; 《科学通报》, 1978, No. 12, 724; 1979, No. 1. 59.
- [4] 吴光照,张秀荣;《激光》, 1981, 8, No. 5, 12~14.
- [5] K. Otsuka et al.; IEEE J. Quant. Electr., 1975. QE-11, 330.
- [6] H. Y-P. Hong; Mat. Res. Bull., 1975, 10, 635 ~640.
- [7] Н. Е. Алексеев и др.; Известия АН ССС Р, Сер. неорганические материалы, 1980, 16, 1056.
- [8] Ю. К. Воронько и др.; ЖЭТФ, 1976, 71, 478.
- [9] P. L. Dexter; J. Chem. Phys., 1963, 21, 876.
- [10] S. Singh et al.; J. Appl. Phys., 1975, 46, 1191.
- [11] H. G. Danielmeyer; "Advances in Lasers Vol. IV", Editors Levine, N. Y., 1975.
- [12] H. P. Weber: Optical and Quantum Electronics. 1975, 7, 431. 10

• 719 •